Welcome to Xcessiv’s documentation!¶
Xcessiv is a web-based application for quick and scalable hyperparameter tuning and stacked ensembling in Python.
Features¶
- Fully define your data source, cross-validation process, relevant metrics, and base learners with Python code
- Any model following the Scikit-learn API can be used as a base learner
- Task queue based architecture lets you take full advantage of multiple cores and embarrassingly parallel hyperparameter searches
- Direct integration with TPOT for automated pipeline construction
- Automated hyperparameter search through Bayesian optimization
- Easy management and comparison of hundreds of different model-hyperparameter combinations
- Automatic saving of generated secondary meta-features
- Stacked ensemble creation in a few clicks
- Automated ensemble construction through greedy forward model selection
- Export your stacked ensemble as a standalone Python file to support multiple levels of stacking